an error of $3 \mathrm{kcal} / \mathrm{mol}$ at this level of theory is certainly possible, a reasonable argument can be put forth that the two isomers should be closer in energy in the gas phase than in the liquid phase. The dipole moment of $11\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NNHCH}_{3}\right)$ is calculated to be 1.95 D compared to a value of 0.05 D for $\mathbf{1 0}\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NCH}_{2} \mathrm{C}\right.$ H_{3}). Therefore, internal hydrogen bonding in the hydrazone form should be larger than in the azo form (the azo form also has no hydrogens suitable for hydrogen bonding), which would lead to a greater heat of vaporization for the hydrazone. Thus, while the hydrazone form is $3.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the azo form in the liquid phase, in the gas phase the difference in the heats of formation would be reduced by the difference in the heats of vaporization.

Conclusion

The azo radical has more $\mathrm{N}-\mathrm{C}$ double bond character than $\mathbf{N}-\mathbf{N}$ double bond character as demonstrated by a calculation of structural parameters and the $\mathrm{N}-\mathrm{C}$ and $\mathrm{N}-\mathrm{N}$ rotational barriers.

Addition of a hydrogen to the radical at either the carbon or nitrogen terminus produces either the azo form or the hydrazone form with nearly equal exothermicity. Substitution of a methyl for a hydrogen on carbon increases the stability of the hydrazone form while the substitution of a methyl for a hydrogen on the terminus nitrogen increases the stability of the azo form.

Acknowledgment. The donors of the Petroleum Research Fund, administered by the American Chemical Society, are thanked for financial support. Computer time for this study was also donated by the Auburn University Computer Center and the Alabama Supercomputer Network. I would like to thank Professor Paul Engel for helpful discussions and Gustavo Scuseria for providing a preprint of his work.

Supplementary Material Available: Tables of absolute energies in hartrees (4 pages). Ordering information is given on any current masthead page.

Abnormally Narrow C-M-C Angle in $\mathrm{M}\left(\mathrm{L}_{1}\right) \mathrm{L}_{2}$ Complexes $\left(\mathrm{M}=\mathrm{Si}, \mathrm{Al}, \mathrm{Mg}, \mathrm{Na} ; \mathrm{L}_{1}\right.$ and $\left.\mathrm{L}_{2}=\mathrm{CO}, \mathrm{CN}\right)$

Shogo Sakai ${ }^{*, \dagger}$ and Satoshi Inagaki ${ }^{\ddagger}$
Contribution from the Department of Computer Science, Faculty of Engineering. Osaka Sangyo University. Daito 574. Japan. and the Department of Chemistry. Faculty of Engineering. Gifu University, Yanagido. Gifu 501-11. Japan. Received March 13. 1990

Abstract

The geometries and the binding energies of AlCO and $\mathrm{Al}(\mathrm{CO})_{2}$ were calculated by the ab initio molecular orbital methods. The geometry of AlCO is linear, and the calculated $\mathrm{Al}-\mathrm{C}$ bond distance depends on the electron correlation effects. The bond angle $\mathrm{C}-\mathrm{Al}-\mathrm{C}$ in $\mathrm{Al}(\mathrm{CO})_{2}$ is $70-74^{\circ}$, and the binding energy between the Al atom and CO is four or five times larger than that ($2-4 \mathrm{kcal} / \mathrm{mol}$) of AlCO . In AlCO , the electron repulsion between the n orbital of CO and the 3 s orbital of the Al atom is essential. Important for $\mathrm{Al}(\mathrm{CO})_{2}$ are the $3 \mathrm{~s} \rightarrow 3$ p polarization on Al induced by the delocalization from the n orbitals of two CO's to the $3 p$ orbital (a_{1} symmetry) of Al. The electronic reorganization involves the cyclic $n-3 s-3 p-n$ orbital interaction that is controlled by the orbital phase continuity-discontinuity properties. The geometries of $\mathrm{M}\left(\mathrm{L}_{1}\right) \mathrm{L}_{2}$ complexes for various electronic states of four main metal atoms were also calculated by the ab initio MO methods. M is silicon, aluminum, magnesium, and sodium atoms, and L_{1} and L_{2} are CO or CN molecules. From the calculated results, the $\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle decreases with increasing occupation number for the metal state, which is an index for the electronic configuration of the metal and decreases with decreasing electronegativity of the metal atom.

1. Introduction

The interactions of small molecules with metal atoms, clusters, and surfaces have been extensively studied both experimentally and theoretically. ${ }^{1-3}$ One of the recent focuses is the structure of $\mathrm{Al}_{x}(\mathrm{CO})_{y}$ complexes. Matrix isolation spectroscopy has provided particularly valuable data. The products of condensation of Al and CO have been studied by IR^{2} and ESR 3 methods. These studies showed that $\mathrm{Al}(\mathrm{CO})_{2}$ is the major product. No evidence for the formation of AICO was obtained. From the IR intensities of the symmetric and asymmetric CO stretching modes the $\mathrm{C}-$ Al-C angle was predicted to be about 110° on the assumption that the $\mathrm{Al}-\mathrm{C}-\mathrm{O}$ bonds are linear.

On the other hand, the AlCO and $\mathrm{Al}(\mathrm{CO})_{2}$ complexes have been reported in a few theoretical papers. ${ }^{46}$ These studies showed that the AlCO complex has small binding energy. In the $\mathrm{Al}(\mathrm{CO})_{2}$ complex, the C-Al-C angle was predicted at about $70^{\circ}{ }^{5.6} \mathrm{Re}$ cently, Grev and Schaefer ${ }^{7}$ reported the structure of $\mathrm{Si}(\mathrm{CO})_{2}$ by the SCF MO and CI methods. The $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ angle was estimated at about $78-80^{\circ}$. However, the abnormally narrow bond angles have not been interpreted in a convincing manner.

[^0]Table I. Geometry Parameters and Binding Energies of the AICO Complex

optimization method	geometry, \AA		binding energy, $\mathrm{kcal} / \mathrm{mol}, 6-3 \mathrm{IG}(\mathrm{d})$			
	$\frac{\text { geome }}{\text { Al-C }}$	$\frac{\mathrm{ry}, \mathrm{A}}{\mathrm{C}-\mathrm{O}}$	HF	MP2	MP3	MP4. (SDTQ)
HF/3-21G	3.486	1.127	-0.79	-2.15	-1.82	-2.09
$\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$	3.740	1.113	-0.87	-1.85	-1.60	-1.79
MP2/3-21G	2.289	1.177	5.55	-3.97	-2.42	-3.89
MP2/6-31G(d)	2.128	1.165	6.33	-4.70	-3.32	-4.41

In this paper we first present the results of $a b$ initio MO calculations on AlCO and $\mathrm{Al}(\mathrm{CO})_{2}$ and propose that the geo-

[^1]Table II. Geometry Parameters and Binding Energies of the $\mathrm{Al}(\mathrm{CO})_{2}$ Complex

optimization method	geometry				binding energy, $\mathrm{kcal} / \mathrm{mol}$		
							$6-31 \mathrm{G}(\mathrm{d})$
	Al-Ca	$\mathrm{C}-\mathrm{O}^{\text {a }}$	$\mathrm{CAIC}^{\text {b }}$	$\mathrm{AlCO}^{\text {b }}$	MP2	MP3	MP2
HF/3-21G	2.264	1.131	72.4	169.0	-19.9	-17.9	-15.6
MP2/3-21G	2.144	1.177	72.7	166.9	-21.5	-19.9	-19.5
MP2/6-31G(d)	$2.089^{\text {c }}$	$1.165^{\text {c }}$	$69.6{ }^{\text {c }}$	$165.9{ }^{\text {c }}$			$-17.3{ }^{\text {c }}$

${ }^{a}$ Angstroms. ${ }^{b}$ Degrees. ${ }^{c}$ Reference 6.
metrical abnormality results from the atomic polarization controlled by the orbital phase. In the following section, the main metal complexes generally formulated as $M\left(L_{1}\right) L_{2}(M=$ silicon, aluminum, magnesium, and sodium; L_{1} and $\mathrm{L}_{2}=\mathrm{CO}$ and/or CN) were also calculated by the $a b$ initio MO methods. The general rules for the $L_{1}-\mathrm{M}-\mathrm{L}_{2}$ bond angle are proposed.

2. Computational Methods

Ab initio molecular orbital calculations were carried out by using the gaussian 82^{8} and Gamess ${ }^{9}$ programs. The basis sets used were the split-valence $3-21 \mathrm{G} \operatorname{set}^{10}$ and the split-valence plus d polarization 6 $31 \mathrm{G}(\mathrm{d})$ set. ${ }^{11}$ All equilibrium geometries were determined with use of analytical energy gradients. ${ }^{12}$ The stationary points were identified by the calculated vibrational frequencies. The force-constant matrix, and thereby the vibrational frequencies, was obtained with analytically calculated energy second derivatives. ${ }^{13}$

Additional calculations were performed, at the optimized structures, with electron correlation (excluding inner shells) incorporated through the second-, third-, and fourth-order Moller-Plesset perturbation theory (MP2, MP3, and MP4). ${ }^{14}$

3. Results and Discussion

A. AlCO. The ground state of the AlCO complex is the ${ }^{2} \Pi$ state, and the geometry parameters and the binding energies are listed in Table I. The MP2 calculations gave A1-C bond distances 1.2-1.6 \AA shorter than that calculated from the HF methods. The correlation effects are essential for the distance between the Al atom and CO.

The dissociation energy is about $2-4 \mathrm{kcal} / \mathrm{mol}$ at the MP4/ $6-31 \mathrm{G}(\mathrm{d})$ calculation level with various optimized geometries. The potential energy surface is very flat for the variation of the Al-C distance. These dissociation energies are in good agreement with the previous value, ${ }^{6} 3.25 \mathrm{kcal} / \mathrm{mol}$, at the MP4(SDTQ)/6$311 \mathrm{G}^{*}[\mathrm{C}, \mathrm{O}] / 6-31 \mathrm{G}(2 \mathrm{~d})[\mathrm{Al}]$ level with the MP2 optimized geometry. Therefore, the basis set dependency is small.

In order to study the dependency of the potential energy on the distance between CO and the Al atom for various doublet electronic states of the Al atom, $\mathrm{MC}-\mathrm{SCF}-\mathrm{Cl}$ calculations in conjunction with the $3-21 \mathrm{G}$ basis set for the $\mathrm{Al}-\mathrm{CO}$ system were performed. Four active spaces corresponding to the valence or-

[^2]

Figure 1. Potential energy curves of the ground and excited states for the change of the $\mathrm{Al}-\mathrm{C}$ distance.
bitals of the Al atom were chosen for both the $\mathrm{MC}-\mathrm{SCF}$ and CI calculations. All single, double, and triple excitations with respect to the ground state have been included. The calculated potential energy curves are shown in Figure 1. The CO bond length and the $\mathrm{Al}-\mathrm{C}-\mathrm{O}$ angle are fixed at $1.177 \AA$ and 180° (the MP2/3-21G optimized values), respectively. The states with one electron in p_{σ} do not have energy minima, possibly due to the electron repulsion between the singly occupied p_{σ} orbital and the n orbital of CO. Furthermore, electrons in p_{σ} diminish the attraction due to electron delocalization from n to p_{σ}. Stable minima (about 60 $\mathrm{kcal} / \mathrm{mol}$) were found for the states, including a half-occupied or unoccupied s orbital. These results suggest that the electron repulsion between the doubly occupied 3 s orbital of the Al atom and the n orbital of CO is very important.

The binding energy in AICO in its ground state is considered to be determined primarily by the attractive interaction between the n orbital of CO and the vacant p_{σ} orbital of the Al atom and the repulsive interaction of the n orbital of CO with the doubly occupied 3 s of the Al atom, as shown in the following picture.

B. $\mathrm{Al}(\mathrm{CO})_{2}$. The ground state of the $\mathrm{Al}(\mathrm{CO})_{2}$ complex is the ${ }^{2} \mathrm{~B}_{1}$ state, in agreement with previous results. ${ }^{5.6}$ The geometry parameters of the complex and the binding energy are listed in Table I1. The correlation effect on the Al-C distance is much smaller than that in the AICO complex. The C-Al-C angle is about $70-74^{\circ}$ and does not depend on the method of calculation. The $\mathrm{C}-\mathrm{C}$ distance between the CO ligands is about 2.4-2.7 \AA, much longer than the standard $\mathrm{C}-\mathrm{C}$ single bond length ($\mathrm{C}-\mathrm{C}=$ 1.53-1.54 \AA in $\mathrm{H}_{3} \mathrm{CCH}_{3}$) obtained at similar levels of theory. ${ }^{15}$ The calculated $\mathrm{Al}-\mathrm{C}-\mathrm{O}$ angle is about $166-169^{\circ}$, and it does not depend on the method of calculation. This reduces the repulsion of the n orbital of CO with the occupied 3 s orbital of the Al atom, but it enhances the repulsion between the n orbitals. The two-CO

Table III. Geometry Parameters of $M\left(L_{1}\right) L_{2}$ Complexes

metal	charge	metal state	L_{1}	L_{2}	ϕ, deg	α, deg	β, deg	MC_{1}, \AA	MC_{2}, \AA
Si	+1	s**2 $\mathrm{p}_{\mathrm{x}} * * 1$	CO	CO	80.3	174.6		2.2658	
Si	+1	s**1 $\mathrm{p}_{\mathrm{x}} * * 2$	CO	CO	101.1	178.6		1.8404	
Si	+1	$\mathrm{s} * * 2 \mathrm{p}_{\pi} * * 0$	CO	CN	85.6	178.1	177.7	2.3405	1.8656
Si	+1	S**1 $\mathrm{p}_{\mathrm{\pi}} * * 1$	CO	CN	105.8	179.0	176.8	1.9549	1.7909
Si	+1	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}}$ **0	CN	CN	110.1	177.7		1.7982	
Si	0	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 2$	CO	CO	78.9	173.4		1.9240	
Si	0	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}}$ * ${ }^{\text {l }}$	CO	CN	83.7	176.0	177.1	2.1341	1.9070
Si	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}}$ **2	CO	CN	115.0	177.7	176.8	1.7789	1.8211
Si	0	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}}$ **0	CN	CN	93.9	177.1		1.8992	
Si	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 1$	CN	CN	117.6	176.4		1.8172	
Si	-1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}}$ **2	CO	CN	88.3	174.8	176.0	1.8429	1.9513
Si	-1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}}$ **1	CN	CN	93.1	176.2		1.9423	
Al	+1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 0$	CO	CO	78.1	177.9		3.02	
Al	+1	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 1$	CO	CO	92.5	177.2		2.0934	
Al	$+1$	$\mathrm{s} * * 0 \mathrm{p}_{\mathrm{x}} * * 2$	CO	CO	180.0	180.0		1.8887	
Al	0	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 1$	CO	CO	72.4	169.0		2.2637	
Al	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}}$ **2	CO	CO	87.3	179.8		1.9627	
AI	0	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 0$	CO	CN	74.7	183.0	179.7	3.2913	2.0419
Al	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{m}} * * 1$	CO	CN	102.8	177.6	178.4	2.0027	1.9468
Al	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{s}} * * 0$	CN	CN	113.3	177.9		1.9507	
AI	0	$\mathrm{s} * * 0 \mathrm{p}_{\mathrm{x}} * * 1$	CN	CN	180.0	180.0		1.8738	
Al	-1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 1$	CO	CN	87.0	174.2	176.1	2.0313	2.0816
Al	-1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 0$	CN	CN	91.7	175.7		2.0829	
AI	-1	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 1$	CN	CN	112.6	177.0		1.9884	
A1	-1	$\mathrm{s} * * 0 \mathrm{p}_{\mathrm{x}} * * 2$	CN	CN	180.0	180.0		1.9009	
A1	-2	s**2 $\mathrm{p}_{\mathrm{x}} * * 1$	CN	CN	91.2	175.2		2.1604	
Mg	+1	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{m}} * * 0$	CO	CO	86.0	174.8		2.4864	
Mg	0	s**2 $\mathrm{p}_{\mathrm{x}} * * 0$	CO	CO			dissociation		
Mg	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 1$	CO	CO	82.7	177.0		2.2538	
Mg	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 0$	CO	CN	87.8	180.3	180.5	2.5582	2.0828
Mg	0	$\mathrm{s} * * 0 \mathrm{pr}^{*} * * 0$	CN	CN	180.0	180.0			
Mg	-1	$\mathrm{s} * * 2 \mathrm{p}^{*} * * 0$	CO	CN			dissociation		
Mg	-1	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 0$	CN	CN	111.7	177.2		2.1472	
Mg	-2	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 0$	CN	CN	91.7	175.2		2.3375	
Mg	-2	s** $1 \mathrm{p}_{\mathrm{p}} * * 1$	CN	CN	110.4	177.2		2.2312	
Na	0	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{s}} * * 0$	CO	CO	75.3	176.4		3.0608	
Na	-1	$\mathrm{s} * * 2 \mathrm{p}_{\mathrm{x}} * * 0$	CO	CO			dissociation		
Na	-1	s**1 $p_{x} * * 1$	CO	CO	78.8	175.2		2.6493	
Na	-1 -2	s**0 $\mathrm{p}_{\mathrm{x}} * * 0$	CN	CN	180.0	180.0		2.3068	
Na	-2	$\mathrm{s} * * 1 \mathrm{p}_{\mathrm{x}} * * 0$	CN	CN	118.1	181.4		2.4340	

Figure 2. Orbital correlation diagram of n orbitals of $\mathrm{CO},(\mathrm{CO})_{2}$, and $\mathrm{Al}(\mathrm{CO})_{2}$.
system in the complex is destabilized about $5.7 \mathrm{kcal} / \mathrm{mol}(\mathrm{HF} /$ $3-21 G)$. The $(n+n)$ and ($n-n$) orbital energy levels of the OC- CO system and the corresponding a_{1} and b_{2} orbitals of the complex are shown in Figure 2. The stabilization of the a_{1} orbital in the complex is more than that of the b_{2} orbital. The interaction

Figure 3. Diagram of one-electron-transfer configurations.
with the p orbital of a_{1} symmetry on the Al atom is larger than that with the p orbital of b_{2} symmetry. The bond structure of the complex is primarily interpreted in terms of the interaction of the vacant 3 p orbital of a_{1} symmetry of the Al atom and the n orbitals of CO molecules (I).

The stabilization energy of the complex is about $16-20$ $\mathrm{kcal} / \mathrm{mol}$, which is four or five times that of the AICO complex.

Three typical bonding structures (I-III) are conceivable for the $\mathrm{Al}(\mathrm{CO})_{2}$ complex. In I, both CO molecules are coordinated to the same lobe of a p orbital. In structure II, two CO molecules

(1)

$0 \equiv C O$ OAI○CC=O
(11)
(111)
coordinate to different p orbitals orthogonal to each other. The
bonding between Al and CO is similar to that of the AICO complex. In III, two CO molecules coordinate to one porbital (similar to I), but to its opposite lobes. The preceding calculations have shown the $\mathrm{Al}(\mathrm{CO})_{2}$ complex is represented by I. The reason can be provided by the orbital phase continuity-discontinuity principle that has been originally developed for cyclic interaction of three systems ${ }^{16}$ and extended to noncyclic conjugated systems ("cyclic" orbital interaction in acyclic conjugation). ${ }^{17}$ The Al(CO) $)_{2}$ complex is a noncyclic system, OC--Al--CO.

We consider in-plane bonding closely related to the abnormal bond angles. The valence orbitals, 3 s and 3 p , of Al and two n orbitals, n_{1} and n_{2}, of the CO molecules are important for the bond structure of the complex. The ground electronic configuration, $\Phi(G)$, has two electrons in 3 s and two electron in each n orbital (Figure 3). The 3p orbital is vacant. There are two one-elec-tron-transfer configurations, $\Phi\left(\mathrm{n}_{1} \rightarrow \mathrm{p}\right)$ and $\Phi\left(\mathrm{n}_{2} \rightarrow \mathrm{p}\right)$, and a one-electron locally excited configuration $\Phi(\mathrm{s} \rightarrow \mathrm{p})$. The configuration interaction between $\Phi(\mathrm{G})$ and $\Phi\left(\mathrm{n}_{1} \rightarrow \mathrm{p}\right)$ involves the $\mathrm{n}_{1}-\mathrm{p}$ orbital interaction. Similary, the $n_{2}-p$ interaction is involved in $\Phi(\mathrm{G})-\Phi\left(\mathrm{n}_{2} \rightarrow \mathrm{p}\right)$. The $\Phi\left(\mathrm{n}_{1} \rightarrow \mathrm{p}\right)-\Phi(\mathrm{s} \rightarrow \mathrm{p})$ and $\Phi\left(\mathrm{n}_{2} \rightarrow \mathrm{p}\right)-\Phi(\mathrm{s} \rightarrow \mathrm{p})$ interactions involve the $n_{1}-s$ and $n_{2}-s$ interactions, respectively. As a result, the orbital interaction among the n_{1}, n_{2}, s, and p is cyclic (IV).

Therefore, the electronic reorganization implied in Figure 3 or the delocalization-induced atomic polarization is under the control of the orbital phase continuity-discontinuity properties. The phase continuity requirements ${ }^{16}$ are (1) the donating orbitals out of phase, (2) the donating and accepting orbitals in phase, and (3) the accepting orbitals in phase. The orbitals in cyclic array IV meet the requirements in structure I (V) where one lobe of the 3 p orbital interacts with both of the n orbitals. The polarization is promoted by the phase continuity. By contrast, the cyclic orbital interaction dissatisfies the phase continuity requirements for structure III (VI) where the opposite lobes interact with different CO molecules. The delocalization-polarization is disfavored. For structure II, no corresponding cyclic interaction is involved (VII), since the n orbitals of CO molecules interact with different p orbitals. The delocalization polarization is neither favored nor disfavored by the orbital phase properties. The resulting prediction that the structure is the most stable is consistent with the present computational results.
C. Generalization: $\mathbf{M}\left(\mathbf{L}_{1}\right) \mathbf{L}_{2}$. In order to generalize the preceding theoretical arguments about $\mathrm{Al}(\mathrm{CO})_{2}$, we investigated the $\mathrm{M}\left(\mathrm{L}_{1}\right) \mathrm{L}_{2}$ complexes, where $\mathrm{M}=\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Si}$ and L_{1} and L_{2} $=\mathrm{CO}$ and $/$ or CN . The geometries were optimized under the constraint of C_{5} or $C_{2 v}$ symmetry. Doublet and triplet states were calculated for the open-shell system. The geometrical parameters for various electronic states are listed in Table III, where the "charge" indicates the total electric charge of the complex. The

[^3]"metal state" showed an electron configuration of the metal defined as follows. The metal atom is supposed to be coordinated by neutral CO and/or anionic CN molecules. Remaining valence electrons on the metal atom were separated into σ (3s) and π (3p p_{π}) electrons, denoted as n_{1} in $s_{*} n_{1}$ and n_{2} in $p_{\pi} * n_{2}$, respectively. The ϕ, α, and β are the angles of $\mathrm{C}-\mathrm{M}-\mathrm{C}, \mathrm{M}-\mathrm{C}-\mathrm{O}(\mathrm{N})$, and another $\mathrm{M}-\mathrm{C}-\mathrm{O}(\mathrm{N})$ in the complex. The MC_{1} and MC_{2} are the bond distances of $\mathrm{M}-\mathrm{C}\left(\mathrm{L}_{1}\right)$ and $\mathrm{M}-\mathrm{C}\left(\mathrm{L}_{2}\right)$, respectively.

In all complexes with s.. 0 in the metal state the geometries are linear ($\phi=\alpha=180^{\circ}$). In these complexes the 3 s orbital is vacant. The $3 \mathrm{~s}-3 \mathrm{p}$ electron promotion is not possible. The results support the interpretation for abnormally narrow $\mathrm{C}-\mathrm{Al}-\mathrm{C}$ angle by the atomic polarization. The metal state for each total charge correlates with the $\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle. In a series of Mg, Al, or Si complexes with the same number of total electronic charges, the $\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle decreases with the 3 s and $3 \mathrm{p}_{\pi}$ occupation numbers. The electrons in the 3 s orbital are indispensable for the $3 \mathrm{~s}-3 \mathrm{p}_{\sigma}$ promotion. Increased 3s population facilitates the atomic polarization. The $3 p_{\pi}$ electrons are expected to enhance the polarization, which reduces electron repulsion between the 3 s and $3 p_{\pi}$ orbitals. Accordingly, the correlation between the angle and the electron configuration of the metal atom is consistent with the delocalization-polarization mechanism proposed for the C -$\mathrm{M}-\mathrm{C}$ bending.

For the complexes of the same metal state the $\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle decreases as the electronegativity of the metal atom is lowered. The low electronegativity is accompanied by the reduction of the energy gap between the 3 s and 3 p orbitals. This is another factor promoting the atomic polarization.

In the complexes, $\mathrm{Mg}(\mathrm{CO})_{2}\left(\mathrm{~s} * * 2 \mathrm{p}_{\pi} * 0\right)$ and $\mathrm{Na}(\mathrm{CO})_{2}{ }^{-}(\mathrm{s} * 2$ $\left.\mathrm{p}_{\boldsymbol{\pi}} * *\right)$ were not located as energy minima (Table III). The C-$\mathrm{M}^{-}-\mathrm{C}$ angle in $\mathrm{Mg}(\mathrm{CO})_{2}$ is estimated to be very small $\left(<70^{\circ}\right)$ if it can be extrapolated. The very small angle may produce large repulsion between the ligand molecules. This is why these complexes are predicted to be unrealistic.

In order to examine the applicability of the relation between the angle and the metal state, $\mathrm{Si}\left(\mathrm{N}_{2}\right) \mathrm{N}_{2}\left(\mathrm{~s}_{\mathrm{m}} 2 \mathrm{p}_{\mathrm{x}} *{ }^{2}\right)$ and $\mathrm{Si}\left(\mathrm{N}_{2}\right) \mathrm{N}_{2}{ }^{+}$ ($s_{*=1} \mathrm{p}_{\pi^{* *}}$) were calculated. The calculated NSiN angles for the $\mathrm{Si}\left(\mathrm{N}_{2}\right) \mathrm{N}_{2}$ and $\mathrm{Si}\left(\mathrm{N}_{2}\right) \mathrm{N}_{2}{ }^{+}$complexes are 79.7° and 98.9°, respectively. The deviations from the estimated values are negligibly small (0.8° and 2.2°, respectively).

4. Conclusions

For the AICO complex, the electron repulsion between the n orbital of CO and the 3 s orbital of the Al atom is essential for the binding energy of the complex. The repulsion and the attractive interaction between the n orbital of CO and the vacant 3 p orbital of the Al atom contribute most to the complexation. From the balance of these interaction energies, the binding energy is only $2-4 \mathrm{kcal} / \mathrm{mol}$.

In the $\mathrm{Al}(\mathrm{CO})_{2}$ complex, the binding between Al and CO is about four to five times stronger than that of the AICO complex. The C-Al-C angle is extraordinarily small (about 70°). This suggests the bond structure of type I. The anomaly was interpreted by the orbital phase continuity-discontinuity properties.

We found the good correlation between the $\mathrm{L}_{1}-\mathrm{M}-\mathrm{L}_{2}$ angle in the complex $\mathrm{M}\left(\mathrm{L}_{1}\right) \mathrm{L}_{2}$ and the electron configurations of the metal atoms defined as metal state (where $\mathrm{M}=\mathrm{Na}, \mathrm{Mg}$. Al, and Si and $\mathrm{L}=\mathrm{CO}, \mathrm{CN}$, and N_{2}). The $\mathrm{L}_{1}-\mathrm{M}-\mathrm{L}_{2}$ angle decreases with the 3 s and $3 \mathrm{p}_{\pi}$ occupation number of the metal state and as the electronegativity of the metal atom is lowered.

Acknowledgment. This research was supported by the Grant-in-Aid for Cooperative Research from the Ministry of Education of Japan, for which we express our gratitude. The numerical calculations were carried out at the Computer Center of the Institute for Molecular Science (IMS).

[^0]: ${ }^{+}$Osaka Sangyo University.
 ${ }^{\text {t Gifu University. }}$

[^1]: (1) Hinchcliffe, A. J.: Ogden. J. S.; Oswald, D. D. J. Chem. Soc., Chem. Commun. 1972, 338.
 (2) Chenier, J. H. B.; Hampson, C. A.; Howard, J. A.; Mile, B. J. Chem. Soc., Chem. Commun. 1986, 730.
 (3) Kasai, P. H.; Jones, P. M. J. Am. Chem. Soc. 1984, 106, 8018. Chenier, J. H. B.; Hampson, C. A.; Howard, J. A.; Mile, B.; Sutcliffe, R. J. Phys. Chem. 1986, 90, 1524.
 (4) Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr. Phys. Rev. B 1983, 28. 5423.
 (5) Sakai. S. Center Reports of IMS 1986, 7, 48.

[^2]: (6) Balaji, V.; Sunil, K. K.; Jordan, K. D. Chem. Phys. Lett. 1987, 136, 309.
 (7) Grev, R. S.; Schaefer, H. F., III J. Am. Chem. Soc. 1989, 111, 5687 (8) Binkley, J. S.; Frisch, M. J.; DeFrees, D. J.; Ragavachari, K. Whiteside, R. A.; Schlegel. H. B.; Fluder, E. M.; Pople, J. A. GAUSSIAN82 Carnegie-Mellon University: Pittsburgh. PA. 1983.
 (9) Dupuis. M.; Spangler, D.; Wendoloski, J. J. NRCC Software Catalog. 1980, Program QG01, 1.
 (10) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980 102, 1980. Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre W. J. J. Am. Chem. Soc. 1982, 104, 2997.
 (11) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. Francl, M M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 (12) Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem. Phys. Lett. 1977, 45, 595.
 (13) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. 1975 9, 229. Pople, J. A.; Krishnan, R.; Schegel, H. B.; Binkley, J. S. Int. J Quantum Chem. 1979, S13, 225
 (14) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618 . Binkley, J. S.: Pople, J. A. Int. J. Quantum Chem. 1975, 9, 229. Pople, J. A.; Binkley, J S.; Seeger, R. Int. J. Quantum Chem. 1976, S10, I. Krishnan, R.; Pople, J A. Int. J. Quantum Chem. 1978. 14. 91. Krishnan. R.; Frisch, M. J.: Pople, J. A. J. Chem. Phys. 1980, 72, 4244.
 (15) DeFrees, D. J.; Levi, B. A.: Pollack, S. K.; Hehre, W. J.; Binkley, J. S.: Pople, J. A. J. Am. Chem. Soc. 1979, 101, 4085 . Binkley, J. S.; Pople J. A.: Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
 (16) Fukui, K.: Inagaki, S. J. Am. Chem. Soc. 1975, 97, 4445. Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4693.

[^3]: (17) Inagaki, S.; Hirabayashi, Y. Chem. Lett. 1982, 709. Inagaki, S.; Kawata. H.; Hirabayashi, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3724. Inagaki, S.: Iwase, K.; Goto, N. J. Org. Chem. 1986, 51, 362.

